Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator.

نویسندگان

  • Der-Chen Chang
  • Yutian Li
چکیده

The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure of the induced geometries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Differential Operators Related to the Heisenberg Sub - Laplacian

Let Lα = − 12 ∑n j=1 ( ZjZj + ZjZj ) + iαT be the sub-Laplacian on the nonisotropic Heisenberg group Hn where Zj , Z̄j for j = 1, 2, · · · , n and T are a basis of the Lie algebra hn. We apply the Laguerre calculus to obtain the fundamental solution of the heat kernel exp{−sLα}, the Schrödinger operator exp{−isLα} and the operator ∆λ,α = − 12 ∑n j=1 λj(ZjZ̄j + Z̄jZj) + iαT. We also discuss some ba...

متن کامل

Estimates for Powers of Sub-laplacian on the Non-isotropic Heisenberg Group

Assume that Lα = − 12 ∑n j=1(ZjZ̄j + Z̄jZj) + iαT is the sub-Laplacian on the nonisotropic Heisenberg group Hn; Zj , Z̄j for j = 1, 2, · · · , n and T are the basis of the Lie algebra hn. We apply the Laguerre calculus to obtain the explicit kernel for the fundamental solution of the powers of Lα and the heat kernel exp{−sLα}. Estimates for this kernel in various function spaces can be deduced eas...

متن کامل

The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups

We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with constant growth vector, using the Popp’s volume form introduced by Montgomery. This definition generalizes the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems on unimodular Lie groups we prove that it coincides with the usual sum of squares. We t...

متن کامل

Inverse nodal problem for p-Laplacian with two potential functions

In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...

متن کامل

Short-time Asymptotics of the Heat Kernel of the Laplacian of a Bounded Domain with Robin Boundary Conditions

The basic problem in this paper is that of determining some geometrical properties of a general bounded domain in two or three dimensions with a smooth boundary where smooth functions are entering the boundary conditions which are not strictly positive, from complete knowledge of the eigenvalues for the negative Laplacian, using the asymptotic expansions of the trace of the heat kernel for shor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Mathematical, physical, and engineering sciences

دوره 471 2175  شماره 

صفحات  -

تاریخ انتشار 2015